
Discussion comments – Adam Kucharski 
 
Understanding the extent of disease transmission – and how it changes over 
time – is a deceptively difficult problem, and these papers highlight some key 
considerations in how we should estimate and interpret COVID transmission 
dynamics. 
 
Lourenzo Pellis and colleagues nicely outline the conceptual choices that must 
be made in estimation of reproduction numbers. Even if we were to be 
omniscient, and see every contact and every transmission event, we would still 
have to make conceptual decisions about whether we are looking back at 
transmission that has already occurred, or predicting ongoing transmission from 
current infectious individuals, which is subject to right censoring. We would also 
have to average across these events, implicitly giving a weighting to the sub-
outbreaks that make up the wider epidemic. As the authors note, in reality, we 
have the further challenge of partial observation – as illustrated by contact 
tracing studies that typically report a much lower R than the observed epidemic 
trajectory implies [1], and in turn discrepancies between observed case 
numbers and likely underlying epidemic patterns [2]. 
 
Then there is the question of how R estimates are used – are they designed to 
track the current epidemic, predict its near-future trajectory, or evaluate 
historical changes in transmission? In practice, a model might be used to do all 
three, but the same tool won’t necessarily be optimal for all of these 
applications. Both papers note that the transmission process implicit in R 
estimation can make it slower to respond to sudden changes. R has a clear 
epidemiological interpretation, which can help in interpretation of control impact 
– especially if we separate effects of immunity and other factors reducing R, as 
Pellis et al describe with their Rc breakdown. But this reliance on an inherent 
transmission assumption can lead to challenges in interpretation, particularly in 
rapidly changing epidemics that take several generations of infection to settle to 
equilibrium. The example of schools is highlighted in both papers – opening and 
closing schools may in the short-term lead to transient effects that don’t reflect 
the underlying transmission that would be observed after convergence to the 
dominant eigenvector, especially if the epidemic is growing from low levels. 
Analogous dynamics have been observed for influenza pre-COVID [3], with new 
strains imported by older age groups travelling internationally before spreading 
locally in wider segments of the population. 
 



In their analysis of school closures, Bekker-Nielsen Dunbar and Held use case 
time series directly, rather than a transformed R estimate. This has the 
advantage of reducing the smoothing incurred during R estimation, but also 
creates the challenge of interpreting coefficients, particularly if case reporting 
varies over time – should rapidly varying case numbers be interpretated as the 
result of sudden changes in transmission, or variability in how cases are 
reported? Although we can use wider data to characterise the observation 
process to some extent – and this is something that is typically under-studied 
compared to transmission modelling – the lack of a ‘ground truth’ for R or force 
of infection means we are reliant on our choice of process and observation 
model. In turn, that raises the issue of interpretability versus predictive power. If 
our aim is to make mechanistic predictions comparing hypothetical control 
options, we need to understand how various components of transmission are 
changing. However, if our aim is simply to make reliable predictions about 
impacts of past interventions from available data, we may be more willing to do 
so at the expense of interpretability. 
 
The two papers emphasise the challenge of communicating both statistical and 
conceptual uncertainty. To cite the example given by Pellis et al, should a 51% 
estimated probability that R is above 1 be sufficient to make a policy decision? 
Additional metrics such as infection prevalence, hospital occupancy, growth 
rates, superspreading events, and predicted cases are suggested by the 
papers’ authors as ways to provide further context. However, as the rise of the 
Delta variant in the UK during May 2021 has illustrated, the potentially most 
valuable information in real-time is often the most recent, and hence the least 
certain. What’s more, the combination of heterogeneous immunity, changing 
contact patterns and variation in subpopulations of spread can limit the extent to 
which early data allows estimation of a pure biological transmission advantage 
(i.e. larger R0), rather than just a simple a growth advantage (i.e. r) or a 
multiplicative increase in Re in areas where variants are spreading. 
 
Decisions around how to combine metrics are likely to become harder as 
COVID-19 vaccination decouples the relationship between available datasets. 
Ultimately this a good problem to have, with social contacts no longer leading to 
hospitalisations and deaths. But it will also create further challenges for 
generalisability – the papers focus on UK and Switzerland respectively, and the 
spread of variants and vaccines globally will increasingly create a need for 
tailored local analysis of transmission, whether tracking current spread or 
evaluating interventions. 
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